Polymeric Sorbents

A Simplified Approach to Solid Phase Extraction (SPE)

Most traditional solid phase extraction sorbents on the market are just variations of the same technology, and often result in poor analyte recoveries, insufficient cleanup, or irreproducibility from extraction to extraction. With this in mind, Phenomenex set out to develop a SPE sorbent that exceeded the limitations of traditional SPE sorbents and offered increased speed, simplicity, and reproducibility for sample preparation. Utilizing a controlled manufacturing process and rigorous performance specifications we are pleased to bring you strata-X polymeric sorbents. A line of polymeric SPE sorbents that allows for a simplified approach to solid phase extraction.
<table>
<thead>
<tr>
<th>Page Range</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5</td>
<td>Benefits of Polymeric Sorbents</td>
</tr>
<tr>
<td>6-19</td>
<td>Selectivity</td>
</tr>
<tr>
<td>6-7</td>
<td>strata-X - Phases</td>
</tr>
<tr>
<td>8-9</td>
<td>strata-X - Reversed Phase</td>
</tr>
<tr>
<td>10-11</td>
<td>strata-X-C - Strong Cation Exchange and Reversed Phase</td>
</tr>
<tr>
<td>12-13</td>
<td>strata-X-CW - Weak Cation and Reversed Phase</td>
</tr>
<tr>
<td>14-15</td>
<td>strata-X-AW - Weak Anion Exchange and Reversed Phase</td>
</tr>
<tr>
<td>16-17</td>
<td>strata-XL - Large Particle Reversed Phase Extraction</td>
</tr>
<tr>
<td>18-19</td>
<td>strata-XL-C - Large Particle Strong Cation Exchange Extraction</td>
</tr>
<tr>
<td>20-27</td>
<td>Formats</td>
</tr>
<tr>
<td>20-21</td>
<td>Traditional Screening</td>
</tr>
<tr>
<td>22-23</td>
<td>High-Throughput Screening</td>
</tr>
<tr>
<td>24-25</td>
<td>Rapid Screening</td>
</tr>
<tr>
<td>26-27</td>
<td>Large Volume/Flash Analysis</td>
</tr>
<tr>
<td>28-31</td>
<td>SPE Accessories</td>
</tr>
<tr>
<td>28-29</td>
<td>Vacuum Manifolds</td>
</tr>
<tr>
<td>30-31</td>
<td>96-Well Plate Manifold</td>
</tr>
<tr>
<td>32-40</td>
<td>SPE Method Development Tips</td>
</tr>
<tr>
<td>32</td>
<td>Sorbent Selection</td>
</tr>
<tr>
<td>33</td>
<td>Sample Pre-Treatment</td>
</tr>
<tr>
<td>34</td>
<td>Extraction of Polar Sterioids from Plasma</td>
</tr>
<tr>
<td>35</td>
<td>Extraction of Beta Blockers from Urine</td>
</tr>
<tr>
<td>36</td>
<td>Extraction of Urea Pesticides from Water</td>
</tr>
<tr>
<td>37</td>
<td>Sorbent Wash and Elution Volumes</td>
</tr>
<tr>
<td>38</td>
<td>Sorbent Mass Selection</td>
</tr>
<tr>
<td>39</td>
<td>Automated SPE - Liquid Handling System</td>
</tr>
<tr>
<td>40</td>
<td>Automated SPE Extraction with strata-X 96-Well Plates</td>
</tr>
<tr>
<td>41</td>
<td>Sample Processing Guidelines</td>
</tr>
<tr>
<td>41</td>
<td>Vacuum Manifolds</td>
</tr>
<tr>
<td>42</td>
<td>Method Development Kits</td>
</tr>
<tr>
<td>42</td>
<td>Selected Technical Notes</td>
</tr>
<tr>
<td>43</td>
<td>Contact Information</td>
</tr>
</tbody>
</table>

If Strata SPE products do not perform as well or better than your current SPE product of similar phase, mass and size, send in your comparative data within 45 days and keep the Strata SPE products for FREE!

Subject to Phenomenex Standard Terms & Conditions which may be viewed at www.phenomenex.com/TermsAndConditions.

Strata, Gemini, and Luna are registered trademarks of Phenomenex, Inc. strata-X, Giga, Synergi, Zebron, and Tall-Boy are trademarks of Phenomenex, Inc. © 2008 Phenomenex, Inc. All rights reserved.
Polymeric Based Particles

Benefits to your SPE Methods

• Provides reproducible recoveries from extraction-to-extraction
• Allows for simple method development and sample processing
• Removes contaminants and eliminates matrix effects
• Offers controlled selectivity for target analytes
• Results in streamlined sample preparation

TN-001: Phenols from Water

Higher analyte recoveries than traditional SPE sorbents

SPE Conditions

Sorbent: strata-X 500 mg/6 mL; Strata SDB-L 500 mg/6 mL
Part No.: 8B-S100-HCH
8B-S014-HCH
Condition: 5 mL methanol
Equilibrate: 5 mL water
Load: 500 mL of sample (loaded in a continuous fashion)
Elute: 5 mL acetone, followed by 5 mL methylene chloride
Drying: Extracts were dried using anhydrous sodium sulfate concentrated to 0.5 mL

GC Column: Zebron™ ZB-5
Dimension: 30 m x 0.25 mm x 0.25 μm
Part No.: 7HG-G002-11
Injection: 1μL at 250 °C in 11:1 split ratio
Carrier Gas: Helium
Oven: 40 °C to 325 °C, at 9 °C/min
Program: Detention: MS in selective ion mode
Polymeric Based Particles

Benefits to your SPE Methods

- De-conditioning resistant surface resists dry out and de-activation and provides worry-free manual and automated processing
- pH stability from 1-14 for flexible method development
- 800 m²/g surface area and high analyte capacity results in the ability to load up to 66 % more in comparison to silica-based sorbents per gram
- Grafted polymeric surface offers even distribution of functional groups ensuring superior lot-to-lot reproducibility

High Recoveries of Acidic, Basic, and Neutral Compounds

Conditions

Method: Analytes spiked in porcine serum at concentration of 0.5 or 1.0 μg/mL.
The strata-X method was used.
Contact Phenomenex for more complete method details.
Selectivity

The strata™-X Phases

Polymeric Selectivities Designed to Meet your Separation Needs

With strata-X polymeric sorbents the guesswork that leads to lengthy method development and complications of screening multiple SPE sorbents is eliminated. A suite of unique selectivities have been developed to cover a diverse spectrum of analytes and simplify the method development process for fast and efficient sample preparation.
Selectivity

The strata™-X Phases

Polymeric Selectivities Designed to Meet your Separation Needs

<table>
<thead>
<tr>
<th>Phase</th>
<th>Mode</th>
<th>Analyte</th>
<th>Functional Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>strata-X</td>
<td>Reversed Phase</td>
<td>Polar and Non-polar</td>
<td></td>
</tr>
<tr>
<td>strata-X-CW</td>
<td>Weak Cation Exchange and Reversed Phase</td>
<td>Bases (including Quaternary Amines)</td>
<td></td>
</tr>
<tr>
<td>strata-X-AW</td>
<td>Weak Anion Exchange and Reversed Phase</td>
<td>Acids</td>
<td></td>
</tr>
<tr>
<td>strata-XL-C</td>
<td>Strong Cation Exchange and Reversed Phase</td>
<td>Bases</td>
<td></td>
</tr>
<tr>
<td>strata-XL</td>
<td>Reversed Phase</td>
<td>Polar and Non-polar</td>
<td></td>
</tr>
</tbody>
</table>

Note: The strata™-X Phases are polymeric selectivities designed to meet your separation needs.
Selectivity: strata™-X

Reversed Phase

Reversed Phase Selectivity Without Limitations

Standard reversed phase SPE sorbents such as C18 and C8 retain analytes strictly by hydrophobic interactions. The strata-X reversed phase sorbent retains analytes by hydrophobic interaction and has H- and π-π bonding capabilities for enhanced retention of polar and aromatic analytes. The enhanced retention mechanism of strata-X can be very powerful for applications that require simultaneous extraction of polar analytes (log P<3) and non-polar parent compounds (log P>3). The strong retention mechanisms of strata-X allow for aggressive washing with organic solvents to remove impurities without breakthrough of analyte. strata-X offers reversed phase selectivity without the limitations such as improper cleanup, breakthrough, pH considerations, and method development concerns.

Material Characteristic

<table>
<thead>
<tr>
<th>Material Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (μm)</td>
<td>33</td>
</tr>
<tr>
<td>Pore Size (Å)</td>
<td>85</td>
</tr>
<tr>
<td>Surface Area (m²/g)</td>
<td>800</td>
</tr>
<tr>
<td>pH Stability</td>
<td>1-14</td>
</tr>
</tbody>
</table>
Selectivity: strata™-X
Reversed Phase

- Enhanced retention for polar and aromatic compounds
- Strong π-π retention mechanism allows for aggressive organic wash (>5 % organic) without breakthrough of analyte
- Effectively retains hydrophobic contaminants

Polar and Non-Polar

Condition: with methanol

Equilibrate: with water

Load Sample: Phosphoric acid (2 % of total volume) can be used to disrupt drug and protein interaction

Wash: with 5-60 % methanol in water (organic concentration used in wash can vary based on nature of analyte)

Dry: 1 minute

Elute Analyte: with methanol/acetonitrile (50:50)

See page 37 for recommended solvent volumes
Selectivity: strata™-X-C

Strong Cation Exchange and Reversed Phase

Cleaner Reproducible Extractions

Unlike traditional silica-based mixed mode sorbents that are blended, strata-X-C has a strong cation exchange group uniformly bonded on the polymeric surface completely eliminating recovery or reproducibility problems. The strong cation exchange mechanism gives consistent and extremely clean extracts from biological matrices such as plasma and urine since hydrophobic contaminants can be completely removed by using 100 % organic wash solvents.

Material Characteristic

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (µm)</td>
<td>33</td>
</tr>
<tr>
<td>Pore Size (Å)</td>
<td>85</td>
</tr>
<tr>
<td>Surface Area (m²/g)</td>
<td>800</td>
</tr>
<tr>
<td>pH Stability</td>
<td>1-14</td>
</tr>
<tr>
<td>Ionic Capacity</td>
<td>1 meq/g</td>
</tr>
</tbody>
</table>
Selectivity: strata™-X-C
Strong Cation Exchange and Reversed Phase

- Strong cation exchange mechanism results in strong retention for basic compounds
- Complete elimination of matrix contaminants resulting in better LODs/LOQs
- Multimode retention consists of strong cation exchange (primary interaction) and π-π retention for reversed phase (secondary interaction)
- Fractionation of acidic, basic and neutral analytes in a mix

Bases

Condition: with methanol

Equilibrate: with water

Load Sample: Acidified with 2 % Phosphoric acid

Wash 1: with 0.1 N HCl

Wash 2: *with methanol (elutes acidic and neutral analytes).*

Elute Analyte: with 5 % ammonium hydroxide/methanol† or acetonitrile

† For very hydrophobic compounds methanol can be substituted with methylene chloride and/or isopropanol.

* This helps in removing endogenous contaminants from biological sample matrices and eliminates ion suppression in LC/MS under ESI mode.
Selectivity: strata™-X-CW

Weak Cation Exchange and Reversed Phase

Cleanup of Bases (including Quaternary Amines)
Weak cation exchange functionality of strata-X-CW allows for cleanup of strong bases such as quaternary amines that are irreversibly retained on strong cation exchangers. The pK_a of the strata-X-CW sorbent is more versatile in comparison to strong cation exchangers, giving a wider range of flexibility for elution conditions. Also strata-X-CW allows for elution under acidic conditions with LC/MS compatible buffer. This eliminates the dry down step resulting in faster analysis.

<table>
<thead>
<tr>
<th>Material Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (μm)</td>
<td>33</td>
</tr>
<tr>
<td>Pore Size (Å)</td>
<td>85</td>
</tr>
<tr>
<td>Surface Area (m²/g)</td>
<td>800</td>
</tr>
<tr>
<td>pH Stability</td>
<td>1-14</td>
</tr>
<tr>
<td>Ionic Capacity</td>
<td>0.76 meq/g</td>
</tr>
</tbody>
</table>
Selectivity: strata™-X-CW
Weak Cation Exchange and Reversed Phase

- Weak cation exchange mechanism gives selectivity for weak and strong bases
- Complete elimination of matrix contaminants resulting in better LODs/LOQs
- Weak cation exchange mechanism allows for elution at high and low pH
- Elution with LC/MS compatible buffer eliminates the dry down step resulting in faster analysis

Bases (including Quaternary Amines)

- **Condition:** with methanol
- **Equilibrate:** with water
- **Load Sample:** pH of sample should be between 4.5-7.0**
 - **Wash 1:** with 25 mM ammonium acetate buffer (pH 6.5)
 - **Wash 2:** with methanol (elutes acidic and neutral analytes). This serves to remove endogenous contaminants from biological sample matrices and eliminates ion suppression.
- **Dry:** 1 minute
- **Elute Analyte:** with 2% formic acid in methanol/acetonitrile (20:80)**

**Samples may need to be acidified to disrupt drug-protein interaction. Also sample should be diluted 1:1 with buffer or water ensuring that sample is two pH units below pKₐ of analyte and two pH units above the pKₐ of the sorbent.

** Depending on analyte solubility and hydrophobicity isopropanol/methylene chloride (20:80) can be substituted for methanol/acetonitrile.
Selectivity: strata™-X-AW

Weak Anion Exchange and Reversed Phase

Selective Elution of Acidic Analytes

The weak anion exchange functionality of strata-X-AW allows for cleanup of strong acids such as sulfonates that are irreversibly retained on strong anion exchangers. The pK_a of the strata-X-AW sorbent is more versatile in comparison to strong anion exchangers, giving a wider range of flexibility. Also, strata-X-AW sorbent allows for the selective elution of acidic compounds under acidic conditions or basic conditions for direct inject analysis onto a MS.

Material Characteristic

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (μm)</td>
<td>33</td>
</tr>
<tr>
<td>Pore Size (Å)</td>
<td>85</td>
</tr>
<tr>
<td>Surface Area (m²/g)</td>
<td>800</td>
</tr>
<tr>
<td>pH Stability</td>
<td>1-14</td>
</tr>
<tr>
<td>Ionic Capacity</td>
<td>0.60 meq/g</td>
</tr>
</tbody>
</table>
Selectivity: strata™-X-AW
Weak Anion Exchange and Reversed Phase

- Weak anion exchange mechanism gives selectivity for weak and strong acids
- Complete elimination of matrix contaminants resulting in better LODs/LOQs
- Weak anion exchange mechanism allows for elution at high and low pH
- Elution with LC/MS compatible buffer eliminates the dry down step resulting in faster analysis

Acids

Condition: with methanol
Equilibrate: with water
Load Sample: pH of sample should be two pH units above the \(pK_a \) of the acidic analyte to ensure that the analyte is fully deprotonated
Wash 1: with water
Wash 2: with methanol (elutes basic and neutral analytes)
Elute Analyte: with 2 % \(\text{NH}_2\text{OH} \) in methanol/acetonitrile

Modified conditioning step(s) such as acidifying the methanol (2 % formic) may be needed to improve selectivity.
Selectivity: strata™-XL
Large Particle Reversed Phase Extraction

Large Particle for Viscous Samples with the Selectivity of strata-X

strata-XL is a high capacity large particle designed to be used for viscous samples which tend to clog on standard particle SPE sorbents. This SPE sorbent is ideal for applications in which cleanup is required from difficult sample matrices such as grains, fruits, vegetables, meats, and tissues. In addition strata-XL also has a 300 Å pore size. This large pore size can be especially useful for applications that require the cleanup or concentration of large biomolecules such as proteins.

Material Characteristic

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (μm)</td>
<td>100</td>
</tr>
<tr>
<td>Pore Size (Å)</td>
<td>300</td>
</tr>
<tr>
<td>Surface Area (m²/g)</td>
<td>520</td>
</tr>
<tr>
<td>pH Stability</td>
<td>1-14</td>
</tr>
</tbody>
</table>
Selectivity: strata™-XL

Large Particle Reversed Phase Extraction

- Provides excellent flow for viscous biological fluids such as horse urine and plasma*
- Suited for applications that require cleanup from tissue and food matrices
- Consistent tube-to-tube flow

Polar and Non-Polar

<table>
<thead>
<tr>
<th>Condition:</th>
<th>with methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrate:</td>
<td>with water</td>
</tr>
<tr>
<td>Load Sample:</td>
<td>Phosphoric acid (2% of total volume) can be used to disrupt drug and protein interaction</td>
</tr>
<tr>
<td>Wash:</td>
<td>with 5-60% methanol in water (organic concentration used in wash can vary based on nature of analyte)</td>
</tr>
<tr>
<td>Dry:</td>
<td>1 minute</td>
</tr>
<tr>
<td>Elute Analyte:</td>
<td>with methanol/acetonitrile (50:50)</td>
</tr>
</tbody>
</table>

*To control flow rate with strata-XL, use a stopcock (AH0-6048) when processing samples with a vacuum manifold.
Selectivity: strata™-XL-C
Large Particle
Strong Cation Exchange Extraction

Large Particle for Viscous Samples with the Selectivity of strata-X-C
strata-XL-C is a high capacity large particle designed to be used for viscous samples which tend to clog on standard particle SPE sorbents. This SPE sorbent is ideal for applications in which basic drugs need to be cleaned up from difficult sample matrices such as tissue, whole blood, or horse urine. In addition, strata-XL-C also has a 300 Å pore size. This large pore size can be especially useful for applications that require the cleanup or concentration of large biomolecules such as proteins.

Material Characteristic

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (μm)</td>
<td>100</td>
</tr>
<tr>
<td>Pore Size (Å)</td>
<td>300</td>
</tr>
<tr>
<td>Surface Area (m²/g)</td>
<td>520</td>
</tr>
<tr>
<td>pH Stability</td>
<td>1-14</td>
</tr>
<tr>
<td>Ionic Capacity</td>
<td>1 meq/g</td>
</tr>
</tbody>
</table>
Selectivity: strata™-XL-C
Large Particle
Strong Cation Exchange Extraction

- Provides excellent flow for viscous biological fluids such as horse urine and plasma
- Suited for applications that require cleanup from tissue and food matrices
- High recoveries for basic drugs

Bases

Condition: with methanol
Equilibrate: with water
Load Sample: Acidified with 2 % Phosphoric acid
Wash 1: with 0.1 N HCl
Wash 2: *with methanol (elutes acidic and neutral analytes).
Elute Analyte: with 5 % ammonium hydroxide/methanol† or acetonitrile

† For very hydrophobic compounds methanol can be substituted with methylene chloride and/or isopropanol.
* This helps in removing endogenous contaminants from biological sample matrices and eliminates ion suppression in LC/MS under ESI mode.
Formats:
Traditional Screening

Ordering Information*

1 mL (100/box)

<table>
<thead>
<tr>
<th>Phase</th>
<th>30 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>strata-X</td>
<td>8B-S100-TAK</td>
</tr>
<tr>
<td>strata-X-C</td>
<td>8B-S029-TAK</td>
</tr>
<tr>
<td>strata-X-CW</td>
<td>8B-S035-TAK</td>
</tr>
<tr>
<td>strata-X-AW</td>
<td>8B-S038-TAK</td>
</tr>
</tbody>
</table>

3 mL (50/box)

<table>
<thead>
<tr>
<th>Phase</th>
<th>60 mg</th>
<th>200 mg</th>
<th>500 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>strata-X</td>
<td>8B-S100-UBJ</td>
<td>8B-S100-FBJ</td>
<td>8B-S100-HBJ</td>
</tr>
<tr>
<td>strata-X-C</td>
<td>8B-S029-UBJ</td>
<td>8B-S029-FBJ</td>
<td>8B-S029-HBJ</td>
</tr>
<tr>
<td>strata-X-CW</td>
<td>8B-S035-UBJ</td>
<td>8B-S035-FBJ</td>
<td>8B-S035-HBJ</td>
</tr>
<tr>
<td>strata-X-AW</td>
<td>8B-S038-UBJ</td>
<td>8B-S038-FBJ</td>
<td>8B-S038-HBJ</td>
</tr>
</tbody>
</table>

6 mL (30/box)

<table>
<thead>
<tr>
<th>Phase</th>
<th>100 mg</th>
<th>200 mg</th>
<th>500 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>strata-X</td>
<td>8B-S100-ECH</td>
<td>8B-S100-FCH</td>
<td>8B-S100-HCH</td>
</tr>
<tr>
<td>strata-X-C</td>
<td>8B-S029-ECH</td>
<td>8B-S029-FCH</td>
<td>8B-S029-HCH</td>
</tr>
<tr>
<td>strata-X-CW</td>
<td>8B-S035-ECH</td>
<td>8B-S035-FCH</td>
<td>8B-S035-HCH</td>
</tr>
<tr>
<td>strata-X-AW</td>
<td>8B-S038-ECH</td>
<td>8B-S038-FCH</td>
<td>8B-S038-HCH</td>
</tr>
</tbody>
</table>

*Contact Phenomenex about Teflon® coated tubes
 Formats:
1, 3, and 6 mL Polypropylene Tubes

Traditional Screening

- Compatible with automated liquid handling systems, 12- and 24-position vacuum manifolds, and syringes

Tubes
Requires 12- or 24-position vacuum manifold, or syringe and adaptor cap, or robot
Formats:
High-Throughput Screening
Ordering Information

<table>
<thead>
<tr>
<th>Phase</th>
<th>10 mg</th>
<th>30 mg</th>
<th>60 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>strata-X</td>
<td>8E-S100-AGB</td>
<td>8E-S100-TGB</td>
<td>8E-S100-UGB</td>
</tr>
<tr>
<td>strata-X-C</td>
<td>8E-S029-AGB</td>
<td>8E-S029-TGB</td>
<td>8E-S029-UGB</td>
</tr>
<tr>
<td>strata-X-CW</td>
<td>8E-S035-AGB</td>
<td>8E-S035-TGB</td>
<td>8E-S035-UGB</td>
</tr>
<tr>
<td>strata-X-AW</td>
<td>8E-S038-AGB</td>
<td>8E-S038-TGB</td>
<td>8E-S038-UGB</td>
</tr>
</tbody>
</table>
Formats:
96-Well Plates

High-Throughput Screening

• Compatible with standard 96-well manifolds and automated liquid handling systems
• Up to 2 mL sample volume per well
• Consistent well-to-well flow
• Inert polypropylene housing

96-Well Plates
Requires 96-well plate manifold or robot
Formats:
Rapid Screening
Ordering Information

On-Line SPE

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Unit/Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>00M-S033-B0-CB</td>
<td>strata-X on-line extraction cartridge, 20 x 2.0 mm</td>
<td>ea</td>
</tr>
<tr>
<td>00M-S036-B0-CB</td>
<td>strata-X-CW on-line extraction cartridge, 20 x 2.0 mm</td>
<td>ea</td>
</tr>
<tr>
<td>CH0-5845</td>
<td>Cartridge holder, 20 mm</td>
<td>ea</td>
</tr>
</tbody>
</table>
Formats:
On-Line SPE

Rapid Screening

- 20 x 2.0 mm easy to use cartridge and holder
- Concentrate and cleanup target analytes in minutes
- Compatible with standard HPLC systems and HPLC switching valves
- Removes protein contaminants

On-Line Screening
Requires HPLC system and switch valve

*Fluid Processors available in PEEK and stainless steel. 10-position also available.
Formats:
Large Volume/Flash Analysis
Ordering Information

strata-X Giga Tubes

<table>
<thead>
<tr>
<th>Phase</th>
<th>12 mL (20/box)</th>
<th>20 mL (20/box)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 mg</td>
<td>1 g</td>
</tr>
<tr>
<td>strata-X</td>
<td>8B-S100-HDG</td>
<td>8B-S100-JDG</td>
</tr>
<tr>
<td>strata-X-C</td>
<td>8B-S029-HDG</td>
<td>8B-S029-JDG</td>
</tr>
<tr>
<td>strata-X-CW</td>
<td>8B-S035-HDG</td>
<td>8B-S035-JDG</td>
</tr>
<tr>
<td>strata-X-AW</td>
<td>8B-S038-HDG</td>
<td>8B-S038-JDG</td>
</tr>
</tbody>
</table>

strata-XL Giga Tubes

<table>
<thead>
<tr>
<th>Phase</th>
<th>20/box</th>
<th>16/box</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 g/12 mL</td>
<td>2 g/20 mL</td>
</tr>
<tr>
<td>strata-XL</td>
<td>8B-S043-KDG</td>
<td>8B-S043-KEG</td>
</tr>
<tr>
<td>strata-XL-C</td>
<td>8B-S044-KDG</td>
<td>8B-S044-KEG</td>
</tr>
</tbody>
</table>
Formats:
Strata® Giga™ Tubes
Large Volume/Flash Analysis

• 12, 20, 60 and 150 mL* polypropylene tubes
• Luer slip ensures compatibility with 10-position and all standard vacuum manifolds.

Giga Tubes
Requires Giga Tube Manifold

*Contact Phenomenex or your local Phenomenex distributor about availability of 150 mL tubes.
SPE Accessories: Ordering Information

Vacuum Manifolds*

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Unit/Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH0-7502</td>
<td>Tall-Boy Vacuum Manifold Complete Assembly for Giga Tubes</td>
<td>ea</td>
</tr>
<tr>
<td>AH0-6023</td>
<td>Complete Assembly for 1, 3, 6 mL Tubes</td>
<td>ea</td>
</tr>
<tr>
<td>AH0-6024</td>
<td>Complete Assembly for 1, 3, 6 mL Tubes</td>
<td>ea</td>
</tr>
</tbody>
</table>

*Replacement parts available, contact your local Phenomenex technical consultant or distributor.

Adaptor Caps

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Unit/Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH0-7191</td>
<td>SPE tubes, polyethylene, with Luer tip</td>
<td>15/pk</td>
</tr>
<tr>
<td>AH0-7378</td>
<td>SPE tubes, polyethylene, with Luer tip</td>
<td>5/pk</td>
</tr>
<tr>
<td>AH0-7379</td>
<td>SPE tubes, polyethylene, with Luer tip</td>
<td>5/pk</td>
</tr>
<tr>
<td>AH0-8278</td>
<td>Strata Syringe and Adaptor Kit</td>
<td>ea</td>
</tr>
</tbody>
</table>
SPE Accessories:
10-, 12- and 24-Position Vacuum Manifolds

Stopcock

Glass Chamber

Collection Rack

Vacuum Gauge

Valve Assembly
SPE Accessories: Ordering Information

96-Well Plate Accessories

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Unit/Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH0-7284</td>
<td>96-Well Plate Manifold, Acrylic</td>
<td>ea</td>
</tr>
<tr>
<td>AH0-7195</td>
<td>Pierceable Sealing Mats, 96 Square Well</td>
<td>50/pk</td>
</tr>
<tr>
<td>AH0-7362</td>
<td>Sealing Tape Pad</td>
<td>10/pk</td>
</tr>
<tr>
<td>AH0-7192</td>
<td>0.35 mL/well 96 Square Well Conical V-bottom Collection Plate</td>
<td>50/pk</td>
</tr>
<tr>
<td>AH0-7193</td>
<td>1 mL/well 96 Square Well Conical V-bottom Collection Plate</td>
<td>50/pk</td>
</tr>
<tr>
<td>AH0-7194</td>
<td>2 mL/well 96 Square Well Conical V-bottom Collection Plate</td>
<td>50/pk</td>
</tr>
<tr>
<td>AH0-7279</td>
<td>1 mL/well 96 Square Well Round Bottom Collection Plate</td>
<td>50/pk</td>
</tr>
<tr>
<td>AH0-7408</td>
<td>Solvent Waste Reservoir Tray</td>
<td>50/pk</td>
</tr>
</tbody>
</table>
SPE Accessories:
96-Well Plate Accessories

Well Plate

Glass Chamber

Manifold
Base Plate
SPE Method Development Tips

Sorbent Selection

Identify the possible SPE retention mechanism:

- Reversed Phase (RP), Ion-Exchange (IEX), or Normal Phase (NP)

<table>
<thead>
<tr>
<th>SPE mechanism</th>
<th>Analyte functional group</th>
<th>strata-X sorbent*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversed Phase</td>
<td>Hydrocarbon, aromatic</td>
<td>strata-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>strata-XL</td>
</tr>
<tr>
<td>Ion-Exchange</td>
<td>Bases</td>
<td>strata-X-CW</td>
</tr>
<tr>
<td></td>
<td>Quaternary amines</td>
<td>strata-X-C</td>
</tr>
<tr>
<td></td>
<td>1˚,2˚,3˚ amines</td>
<td>strata-XL-C</td>
</tr>
<tr>
<td></td>
<td>Acids*</td>
<td>strata-X-AW</td>
</tr>
<tr>
<td></td>
<td>Carboxylic acids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfonates</td>
<td></td>
</tr>
</tbody>
</table>

* For analytes that contain a carboxylic acid functional group, Strata SAX can be used as an alternative to strata-X-AW.

Once the general mechanism is identified it will be necessary to identify the most specific strata-X sorbent by matching the analyte functional groups to the sorbent functional groups.
SPE Method Development Tips

Sample Pre-Treatment

Reproducible, high efficiency solid phase extraction requires that the sample be made liquid prior to loading onto a SPE device. The SPE sample should meet the following conditions:

1. Liquid of low viscosity (to pass through the cartridge).
2. Low solids or particulate contaminants (to prevent clogging).
3. Solvent composition that is suitable for retention (each mechanism has different matrix solvent composition requirements for proper retention).

Recommendations

<table>
<thead>
<tr>
<th>Biological Samples (Liquid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine, whole blood, serum, plasma, bile, etc.</td>
</tr>
<tr>
<td>Dilute sample 1:1 with appropriate buffer, precipitate proteins if proteinaceous (ZnSO₄ or ACN), hydrolyze urinary glucuronides, disruption of protein binding (sonication, enzymatic, acids/bases).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological Samples (Solid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ tissues, feces, GI contents</td>
</tr>
<tr>
<td>Homogenize with organic or aqueous solvent depending upon analyte solubility. Settle, decant, centrifuge or filter supernatant. Perform direct Matrix Solid Phase Dispersion (MSPD) extraction on tissue.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (waste, river, etc.)</td>
</tr>
<tr>
<td>Buffer to appropriate pH and filter particulates from sample.</td>
</tr>
</tbody>
</table>

| Soil, sludge |
| Homogenize with organic or aqueous solvent depending upon analyte solubility. Settle, decant, and filter supernatant; perform Soxhlet extraction. |

| Ointments, creams |
| Oil based: |
| Dissolve in non-polar organic (hexane) and extract via polar SPE. |
| Water based: |
| Dissolve in water or water miscible organic (methanol) and extract via non-polar SPE. |

| Fruit, vegetable, herbs |
| Homogenize with organic or aqueous solvent depending upon analyte solubility and filter supernatant. Use appropriate SPE mechanism for the dissolution solvent (hexane = polar mechanism; aqueous = non-polar mechanism; methanol/ACN = either non-polar or polar after proper dilution). |
Extraction of Polar Steroids from Plasma

CN-008

SPE Conditions
- **Sorbent**: strata-X 30 mg/1 mL
- **Part No.**: 8B-S100-TAK
- **Condition**: 1 mL methanol
- **Equilibrate**: 1 mL water
 - **Load**: 1 mL porcine spiked with analyte
 - **Wash**: 1 mL 5% methanol in water
 - **Elute**: 1 mL methanol
- **Evaporate**: add 25 μL of 0.1 mg/mL butyl paraben (external standard) dry down under slow stream of N₂ and reconstitute in 200 μL acetonitrile

HPLC Column
- Synergi™ Max-RP 4 μm 150 x 4.6 mm
- SecurityGuard™ C18 4 x 3.0 mm
- **Part No.**: 00F-4337-E0 and AJ0-4287
- **Sample**: 50 μL of reconstituted extract
- **Mobile Phase**: A: 20 mM KH₂PO₄ (pH 7.0); B: methanol
- **Isocratic**: A/B (35:65) for 20 min
- **Temperature**: 25 °C
- **Detector**: UV @ 254 nm
- **Peaks**:
 1. Prednisolone (1.0 μg/mL)
 2. Betamethasone (1.0 μg/mL)
 3. Butyl Paraben (external std)
 4. Betamethasone Valerate (4.0 μg/mL)

Chromatogram of Extracts
- A) Blank B) Spiked Sample
Extraction of Beta Blockers from Urine
CN-015

SPE Conditions

- **Sorbent:** strata-X-C 30 mg/1 mL
- **Part No.:** 8B-S029-TAK
- **Condition:** 1 mL methanol
- **Equilibrate:** 1 mL water
- **Load:** 1 mL urine spiked with analytes; dilute 1:1 with phosphate buffer saline solution pH 7; acidified with 2 % phosphoric acid
- **Wash 1:** 1 mL 0.1 N HCl
- **Wash 2:** 1 mL methanol, Dry for 1 min
- **Wash 3:** 1 mL NH₄OH/methanol/water (2:50:48)
- **Elute:** 1 mL 5 % NH₄OH/methanol
- **Evaporate:** Spike extract with external standard (1 μg/mL); dry down under nitrogen and reconstitute with 200 μL 20 mM KH₂PO₄ (pH 2.5)

HPLC Column:
- **Part No.:** 00F-4252-E0
- **Sample:** 50 μL of reconstituted extract
- **Mobile Phase:** A: 20 mM KH₂PO₄ (pH 2.5); B: acetonitrile
- **Gradient:** A/B (95:5) to (50:50) in 15 minutes
- **Flow Rate:** 1.5 mL/min
- **Temperature:** 25 °C
- **Detector:** UV @ 210 nm
- **Peaks:**
 1. Pindolol (ext. std.),
 2. Metoprolol (1.0 μg/mL)
 3. Propranolol (1.0 μg/mL)

Chromatogram of Extracts:
- A) Blank
- B) Spiked Sample

100 % organic wash results in clean extracts
Extraction Urea Pesticides from Water
CN-022

SPE Conditions
- **Sorbent:** strata-X 60 mg/3 mL
- **Part No.:** 8B-S100-UBJ
- **Condition:** 2 mL dichloromethane
- **Equilibrate:** 2 mL acetonitrile; 2 mL water
- **Load:** 2 mL spiked tap water
- **Wash 1:** 2 mL water; Dry for 2 min
- **Wash 2:** 1 mL methanol, Dry for 1 min
- **Wash 3:** 1 mL NH₄OH/methanol/water (2:50:48)
- **Elute:** 2 mL of acetonitrile/dichloromethane (1:1) add 20 μg/mL of Linuron (external standard, E.S)
- **Evaporate:** under nitrogen and reconstitute with 200 μL water

HPLC Column: Luna® 5 μm C18(2) 150 x 4.6 mm
- **Part No.:** 00F-4252-E0
- **Sample:** 50 μL of reconstituted water extract
- **Mobile Phase:** A: water; B: acetonitrile
- **Gradient:** A/B (85:15) hold for 2 min to A/B (42:58) in 13 min hold for 2 min
- **Flow Rate:** 2 mL/min
- **Temperature:** 25 °C
- **Detector:** UV @ 214 nm
- **Peaks:**
 1. Fenuron (0.5 μg/mL)
 2. Monuron (0.5 μg/mL)
 3. Forchlorfenuron (0.5 μg/mL)
 4. Diuron (0.5 μg/mL)
 5. Siduron (0.5 μg/mL)
 6. Linuron (E.S.)

Chromatogram of Extracts:
A) Blank B) Spiked Sample

Method can be scaled up for 1-2 L sample volumes.
SPE Method Development Tips

Sorbent Wash and Elution Volumes

Method and Sorbent Volume Selection

The volume of solvent needed for SPE processing is directly related to the mass of sorbent in the SPE tube and more specifically the “bed volume” of the SPE device. Intuitively we know more sorbent requires more solvent, less sorbent = less solvent. Typically 4 - 16 bed volumes are used in SPE methods.

<table>
<thead>
<tr>
<th>Polymer- Based Sorbent Mass*</th>
<th>Practical Minimum Wash and Elution Volume 4 bed volumes</th>
<th>Recommended Wash and Elution Volume 8 bed volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mg</td>
<td>100 µL</td>
<td>200 µL</td>
</tr>
<tr>
<td>30 mg</td>
<td>300 µL</td>
<td>600 µL</td>
</tr>
<tr>
<td>60 mg</td>
<td>600 µL</td>
<td>1.2 mL</td>
</tr>
<tr>
<td>100 mg</td>
<td>1 mL</td>
<td>2 mL</td>
</tr>
<tr>
<td>150 mg</td>
<td>1.5 mL</td>
<td>3 mL</td>
</tr>
<tr>
<td>200 mg</td>
<td>2 mL</td>
<td>4 mL</td>
</tr>
<tr>
<td>500 mg</td>
<td>5 mL</td>
<td>10 mL</td>
</tr>
<tr>
<td>1 g</td>
<td>10 mL</td>
<td>20 mL</td>
</tr>
</tbody>
</table>

* Strata polymeric resins have a larger surface area than Strata silica-based material, hence requiring slightly more solvent per gram for processing. The elution volumes are specific to the chemical nature of the analyte being extracted, its concentration in the sample, the chemical nature of the eluting solvent and the bed mass used. The above is a guideline; an elution study should be conducted to determine the appropriate volume to use.

Suggested flow rate should be 1-3 mL/min or 1-3 drops/sec
SPE Method Development Tips

Sorbent Mass Selection

To select the proper sorbent mass, it is first necessary to determine the volume of sample needed for extraction in order to meet the method detection limits (not including buffer). The following table lists the proper masses that can be used with strata-X polymeric sorbents.

Bio Samples

<table>
<thead>
<tr>
<th>Plasma/Serum</th>
<th>Urine</th>
<th>Recommended Sorbent Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 µL</td>
<td>200 µL</td>
<td>10 mg</td>
</tr>
<tr>
<td>250 µL</td>
<td>500 µL</td>
<td>30 mg</td>
</tr>
<tr>
<td>500 µL</td>
<td>1 mL</td>
<td>60 mg</td>
</tr>
<tr>
<td>1 mL</td>
<td>2 mL</td>
<td>100 mg</td>
</tr>
</tbody>
</table>

Environmental Samples

<table>
<thead>
<tr>
<th>Water (particulate free)</th>
<th>Water (particulate-laden)*</th>
<th>Recommended Sorbent Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mL</td>
<td>25 mL</td>
<td>200 mg</td>
</tr>
<tr>
<td>100 mL</td>
<td>50 mL</td>
<td>500 mg</td>
</tr>
<tr>
<td>500 mL</td>
<td>100 mL</td>
<td>1 g</td>
</tr>
<tr>
<td>1 L</td>
<td>200 mL</td>
<td>2 g</td>
</tr>
</tbody>
</table>

*strata-XL sorbents are recommended for particulate laden samples
SPE Method Development Tips

Liquid Handling System

1. When performing SPE extraction at the elution step, the height of the collection plate under the SPE plate should be adjusted to be as close as possible to the SPE plate without interfering with the vacuum application, so when the vacuum is applied, the funnels under the SPE plate are inside the collection plate wells without the collection plate coming in direct contact with the SPE plate. The purpose of this is to minimize cross-well-contamination that can easily occur at this step.

2. Before capping the 96-well plate with a sealing mat, check for any liquid residue near the top of the plate (often observed after an SPE extraction). Use a lab wipe to remove the residue by gently pressing it against the plate surface. This will prevent cross-contamination that may occur by capillary effect between the sealing mat and well plate. The residue itself should not contribute to cross-contamination since it is a wash solution and does not contain any analyte.

3. When using any liquid handler with liquids that may contribute to cross-contamination, it is recommended that the dispense step be programmed so it ends with the tips in contact with the surface of the liquid. This will efficiently wipe the last drop from the disposable tip and prevent the formation of beads or drops on the tip after the liquid has been dispensed. This method is more effective than a tip touch-off on the side of the wall or an air blowout.
strata-X 96-Well Plates
Automated SPE Extraction

SPE Conditions

- **Sorbent**: 30 mg strata-X 96-well plate
- **Part No.**: 8E-S100-TGB
- **Processing** station: PerkinElmer MultiPROBE® II
- **Condition**: 40 μL Methanol
- **Equilibrate**: 400 μL Water
- **Load**: 500 μL urine diluted with 1mL water
- **Wash 1**: 1 mL 5 % methanol in water
- **Wash 2**: 800 μL 30 % Methanol/Water
- **Elute**: 800 μL water
- **Elution**: 400 μL methanol (in two aliquots)

HPLC Column: Gemini® 3 μm C18
- **Dimension**: 50 x 2.0 mm
- **Part No.**: 00B-4439-B0
- **Mobile Phase**: 0.1 % Formic Acid in Water/
 0.1 % Formic Acid in Acetonitrile
 (70:30)
- **Flow Rate**: 1 mL/min
- **Temperature**: Ambient
- **Detector**: ESI+

Human Urine over 100 Fold conc. range
Calibration curve of Atenolol

Analyte Area / IS Area

Concentration

Human
Urine
over
100
Fold
c onc. range
Calibration
curve
of
Atenolol

% Recovery

0.24 µg/mL
24 µg/mL

µg (conc)

0.10
0.20
0.30
0.40
0.50

Analyte Area / IS Area

µg (conc)

0.10
0.20
0.30
0.40
0.50

% Recovery

0.24 µg/mL
24 µg/mL

Concentration

0
2
4
6
8
10
12
14
16
18
20
22
24

0
2
4
6
8
10
12
14
16
18
20
22
24

0.10
0.20
0.30
0.40
0.50

Analyte Area / IS Area

µg (conc)

0.10
0.20
0.30
0.40
0.50

% Recovery

0.24 µg/mL
24 µg/mL

Concentration
Sample Processing Guidelines

Vacuum Manifolds

- Maximize throughput with simple, cost effective batch processing of up to 96 samples per hour. (24 samples per 15 minutes)
- Fits 13 mm and 16 mm test tubes up to 125 mm in height
- “Slow is Safe” for loading and elution. A flow rate: 1 – 3 drops per second (1 – 3 mL/min) is recommended during the loading and elution steps for typical small volume samples (< 5 mL). At these critical steps the analytes are chemically interacting with the sorbent.
- Large volume samples (> 100 mL) in large cartridges (>1 gram) may be processed at flow rates between 5 – 10 mL/minute
- Conditioning and Wash steps are generally not flow critical
- Flow rate is easily adjusted via master vacuum controller or individual stopcocks if necessary
- Individual stopcocks are typically not needed when using the strata-X family of sorbents (strata-X, X-C, X-CW, X-AW, XL, XL-C). They are very forgiving of improper flow rates and are truly resistant to deconditioning effects caused by excessive drying during the method.
- Reversed phase methods are more forgiving of fast flow rates than ion-exchange or normal phase
Method Development Kits

Method Development Tubes
- Contains 200 mg/3 mL (5 tubes each) of strata-X, X-C, X-CW and X-AW. Allows for traditional screening and method development.

Method Development 96-Well Plate
- Contains 3 rows each of strata-X, X-C, X-CW and X-AW. Allows for high-throughput screening and method development.

Method Development Syringe and Adaptor Kit

* To request a kit or plate contact Phenomenex or your Phenomenex distributor.

Selected Technical Notes
- TN-001 Phenols from Water with strata-X
- TN-002 Strata Method Development 96-Well Plate
- TN-003 Nitroanilines from Water with strata-X
- TN-004 Acidic, Basic, and Neutral Drugs on strata-X
- TN-006 TCA from Serum with strata-X
- TN-007 Acrylamide from French Fries using strata-X-C
- TN-008 Basic Drugs from Biological Matrices on strata-X-C
- TN-009 On-line Extraction of Acyclovir using strata-X
- TN-010 Sulfa Drugs on strata-X-C
- TN-012 Extraction and Analysis of Sulfonamides from Honey
- strata-X 96-Well Plate Method Development White Paper

Please visit www.StrataSPE.com for a full listing of application notes.